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Abstract. In this paper we discuss the design and implementation of a Newton-Krylov-Schwarz solver for the
implicit temporal integration on an unstructured three-dimensional spatial mesh of Richards’ equation for groundwater
flow in unsaturated porous media. We use aggregation techniques from the algebraic multigrid literature to construct
a coarse mesh for two-level Schwarz methods. Our coarse mesh differs from other constructions in that no coarse
mesh geometry need be created and we do not need geometric information about the subdomains. We report on a
computational example to illustrate the performance of the preconditioner.
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1. Introduction. In this paper we discuss the design and implementation of a Newton-Krylov-
Schwarz solver for the implicit temporal integration on an unstructured three-dimensional spatial
mesh of Richards’ equation for groundwater flow in unsaturated porous media. We use aggregation
techniques from the algebraic multigrid literature [33] to construct a coarse mesh for two-level
Schwarz methods. Our coarse mesh differs from other constructions, for example that in [9], in
that no coarse mesh geometry need be created, and we do not need geometric information about
the subdomains.

The mixed form of Richards’ Equation is [8]

SSS( )
@ 

@t
+ �

@S ( )

@t
= r � [KSkr ( )r ( + z)] +W(1.1)

where is pressure head;SS is the specific storage, which accounts for water compressibility and
aquifer elasticity;S ( ) is the water saturation or volumetric fraction of pore space occupied by
water;� is the porosity or volumetric void fraction;KS is the water-saturated hydraulic conductiv-
ity; kr is the relative permeability of the media; andW is a source/sink term. In this formulation,
thez axis is the vertical direction oriented positively upward. BothS andkr are functions of .
KS andSS are provided as data.

The constitutive mode for saturation is

S = Sr +
(1� Sr)

[1 + (� j j)n]
m ;  � 0(1.2)
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whereSr is the residual saturation,� > 0 andn > 1 are parameters specific to the fluid and
soil [25], andm = 1� 1=n [32]. The relative permeability function is [25]

kr =

h
1� (� j j)n�1 [1 + (� j j)n]

�m
i2

[1 + (� j j)n]m=2
;  � 0:(1.3)

BothS andkr are not differentiable at = 0when1 < n < 2. We address this nonsmoothness
and the high cost of evaluation of the nonlinearities in (1.2) and (1.3) by approximatingS andkr
with a spline [23,29]. We used a piecewise linear spline in the computations reported here.

For the sand, silt, and clay soils used in the computations inx 3, we use parameters from the
literature [7, 21]. These parameters are given in Table 1.1 and the saturation and relative perme-
ability functions are plotted in Figure 1.1. Note the strong dependence of relative permeability on
the pressure head in the Figure 1.1.

TABLE 1.1
Typical parameters for soil textural groups

Soil Sr � n

Textural Group (-) (1/ft) (-)

Sand 0.105 4.420 2.68

Silt 0.074 0.487 1.37

Clay 0.179 0.244 1.09

FIG. 1.1.The -S (left) and -kr (right) models used in the column drainage test.
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Implicit temporal integration in three space dimensions leads to large nonlinear equations at
each time step. Newton-Krylov-Schwarz methods solve nonlinear equations by using Newton’s
method with a Schwarz domain decomposition preconditioned Krylov method to approximate the
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Newton step. These methods have been used in computational fluid dynamics for some time [5, 6,
20]. This paper is one of the first to apply these methods to Richards’ equation. Multigrid methods
have also been applied to Richards’ equation, [10, 28, 34, 35].

In x 2 we describe the nonlinear and linear solver issues raised by Richards’ equation, intro-
duce some notation from [27] for domain decomposition, and use that notation to describe our
approach to Schwarz preconditioning.

In x 3 we report numerical results for the solution of a finite element discretization of Richards’
equation in three space dimensions. Our numerical experiments, done on an IBM SP at the North
Carolina Supercomputing Center (NCSC), show that the two-level preconditioners perform well
and have very good scalability.

The work described in this paper is part of the development of the Adaptive Hydrology model,
or ADH. The ADH model is a production code being developed at WES and is designed for the
analysis of basin scale hydrologic phenomena. The focus of this paper is the preconditioners and
we use only fixed (i. e. time independent) unstructured meshes. We have also applied these ideas
to surface water flow [17,18]. We will describe adaptive spatial and temporal refinement and more
complex simulations in future work.

2. Newton-Krylov-Schwarz methods. The weak formulation of Richards’ equation leads to
finite element discretizations that are implicit in time. An elliptic partial differential equation must
be solved at each time step. After discretization one obtains a large system of nonlinear equations.
In this section we begin with a description of inexact Newton methods [11] in general terms and
then show how Newton-Krylov-Schwarz methods fit in that framework.

2.1. Nonlinear Solvers. We express nonlinear equations in the general form:

F (�) = 0:(2.1)

We will assume that a solution �� exists and that a good approximation to �� is available. This
latter assumption is appropriate in the context of implicit temporal integration, where �� is the
solution at the new time step and the initial approximation (the predictor) is an interpolation of
solutions at previous times. We let F 0(�) denote the Jacobian of F at a vector �. We assume that
F 0(�) is Lipshitz continuous in � and F 0(��) is nonsingular. These are standard assumptions in non-
linear equations [19] and are valid for the differential equations under consideration in this paper.
The smoothness assumptions can be violated by the nonlinearities for Richards’ equation in some
cases [24], but this nonsmoothness can be managed by approximation with a well-chosen spline.
Even the nonsmooth effects of a piecewise linear spline, which we use in our implementation, are
benign.

We will describe Newton’s method for (2.1) in the standard way [12, 19] in terms of the tran-
sition from a current approximation �c to the solution �� to a new approximation �+ and describe
the convergence in terms of the relative sizes of the new error e+ = �+ � �� and the current error
ec = �c � ��. The Newton iteration is

�+ = �c � F 0(�c)
�1F (�c):(2.2)

In (2.2) F 0(�c) is the Jacobian matrix at the current iteration. Given sufficiently good data and
sufficiently smooth nonlinearities the Newton iteration will converge quadratically, i. e.

ke+k = O(keck
2);
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where e = � � ��. In temporal integration applications the nonlinear iteration is terminated when

kF (�)k < �a + �rkF (�0)k;(2.3)

where �a and �r are absolute and relative error tolerances.
One does not compute the Newton step s = �F 0(�c)

�1F (�c) by using the inverse of the
Jacobian but rather by solving (perhaps approximately) the linear equation

F 0(�c)s = �F (�c):(2.4)

For problems in three space dimensions the use of a direct method for solving (2.4) is im-
practical for reasons of both storage and computational cost. One must solve (2.4) by an iterative
method. It is common [11,19,26] to terminate that linear iteration when the relative linear residual
is small, i. e.when

kF 0(�c)s+ F (�c)k � �rkF (�c)k(2.5)

for some small �r. (2.5) is called the inexact Newton condition. The parameter �r is called the
forcing term. In applications to temporal integration, one can use absolute residuals and gain some
efficiency [3]. We can express convergence results for both approaches in terms of the termination
condition

kF 0(�c)s+ F (�c)k � �a + �rkF (�c)k:(2.6)

If the initial iterate is near the solution, the nonlinearity is sufficiently smooth, and (2.6) holds
for some �a and 0 � �r < 1 then the error in �+ satisfies, [3, 11, 19],

ke+k = O(keck
2 + �rkeck+ �a):(2.7)

Clearly, if �c is near �� and �r is sufficiently small the iteration will converge rapidly. However,
solving the equation for the Newton step, (2.4), to very high accuracy may be wasteful, particularly
if the initial iterate is far from the solution [13, 19].

2.2. The Linear Iteration and Preconditioning. If the linear equation (2.4) for the Newton
step is solved by an iterative method, the overall iteration is called a Newton-Iterative method.
The iteration (2.2) is called the nonlinear iterationor the outer iteration, and the iteration to solve
the linear equation (2.4) is called the linear iterationor the inner iteration. If a Krylov method is
used as the linear solver the combination was called a Newton-Krylov-Schwarz method in [5] and
that term is now common. In this work we use the Krylov method BiCGSTAB [15, 19, 30] as the
linear solver with an additive Schwarz preconditioner. Other low-storage transpose-free Krylov
methods for nonsymmetric methods [14, 16] were tested in the early stages of this project along
with BiCGSTAB(2), using the implementation from [31].

Preconditioning (from the right in our case), which is critical to good performance, replaces
(2.4) with the equivalent system

F 0(�c)Mŝ = �F (�c)(2.8)

and then sets s = Mŝ. The preconditioning operator M is constructed so that (2.8) is easier to
solve than (2.4).
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2.3. Schwarz Preconditioners. The discretized elliptic problems that must be solved at each
time step have the general form

R(Uh; v) = 0; for all v 2 Vh(2.9)

where R is the weak form of the nonlinear equation, Vh is the space of test functions and Uh 2 Vh.
R is linear in the second argument and nonlinear in the first. Vh is the set of real-valued piecewise
linear functions on the unstructured spatial mesh.

We begin by splitting the original physical domain
 into subdomains
i and restricting the ac-
tion of the differential operator to the subdomains. The division leads to the creation of new bound-
ary pieces, called artificial boundaries, for the subdomains. Figure 1.1 depicts a one–dimensional
domain 
 that is split into two subdomains, 
1 and 
2. The artificial boundaries created by the
split are �1 and �2, with �1 part of the boundary for 
1 and �2 part of the boundary for 
2.

FIG. 2.1. Subdomain Splits in One-Dimension for Two Subdomains
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When creating the subdomains from the original domain, one can require that the subdomains
share an artificial boundary or one can allow the subdomains to overlap, as depicted in Figure 2.1.
Subdomains overlap if part or all of the artificial boundary for one subdomain lies in the interior
of an adjacent subdomain. In Figure 2.1, the artificial boundary �1 lies in the interior of the
subdomain 
2, and similarly �2 lies in 
1. In ADH, the domains overlap with an overlap width of
h, the width of a single element. Increased overlap is difficult to achieve when using unstructured
meshes and we have not attempted to incorporate it. The choice of overlapping subdomains led to
the use of Schwarz-type preconditioners. General discussions of Schwarz preconditioners may be
found in [27].

The closure of the differential operator restricted to the subdomains requires that boundary
conditions be placed on the artificial boundaries, as these boundaries were not part of the original
problem formulation. Schwarz methods use zero Dirichlet boundary conditions on the artificial
boundaries [27] because the algorithms incorporate error corrections on the artificial boundaries
during the subdomain solves.

The one-level additive Schwarz preconditioner is a block Jacobi preconditioner. Let A be
the discretization of the differential operator, and assume that the number of nodes of the discrete
problem included in 
i is ni. Define the matrix Ri to be the (discrete) restriction operator for
subdomain i, i.e., Ri =

h
0 I 0

i
where I is of size ni � ni. If

Bi = RT

i

�
RiAR

T

i

�
�1

Ri
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then the one-level additive Schwarz preconditioner is

M =
pX
i=1

Bi(2.10)

where p is the number of subdomains.
This preconditioner is implemented readily on a multiprocessor computer by assigning one or

more subdomains to a processor. Because the overlap between subdomains is minimal and and zero
Dirichlet conditions are imposed on the artificial boundaries, there is no need for communication
after the application of the one–level additive Schwarz preconditioner.

We found that the performance of the one-level method is inferior to two-level methods, which
we describe now. A two-level method requires a coarse mesh for either the entire computational
domain or a coarse resolution of the entire domain.

Similarly to the one level preconditioner, we define a coarse mesh restriction operator R0 and

let B0 = RT

0

�
R0AR

T

0

�
�1

R0. The two-level additive Schwarz preconditioner is

M = B0 +
pX
i=1

Bi(2.11)

and the two-level hybrid II preconditioner [22, 27] is given by

M = B0 + (I � B0A)
pX
i=1

Bi:(2.12)

In the work reported here we found that the alternative form

M = B0 +
pX
i=1

Bi (I � AB0)(2.13)

performed better.
To avoid generating and storing a separate coarse mesh, we define coarse mesh basis functions

as aggregates of already existing fine mesh basis functions, an idea from algebraic multigrid [33].
One-dimensional examples of these coarse mesh basis functions are depicted in Figure 2.2, with
one coarse mesh basis function defined per subdomain.

FIG. 2.2. Coarse Mesh Basis Function in One-Dimension

0 1 2 3 4 5 6 7 9 10 118

Ω1
Γ2 Γ 1

Ω2

The coarse mesh basis functions are formed by summing the fine mesh functions having sup-
port in a given subdomain. If fvig is the nodal basis for Vh and fDIg is the set of nodes in
subdomain I , then the coarse mesh functions VI are formed by

VI =
X
i2DI

vi:
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The coarse mesh inverse B0 can be constructed from the fine mesh Jacobian in a direct way.

B0 = RT

0

h
R0J (Uh; vi)R

T

0

i
�1

R0

where J is the Jacobian of R and Ri is defined by its action on a vector, i.e.,

(Riu)I =
X
i2DI

ui:

2.4. Parallel implementation. We assign one or more subdomains to each processor. Ele-
ments along the interprocessor boundaries are shared by those processors owning any of its nodes.
The nodal information for the boundary elements must be communicated among processors so that
each processor sees all of the shared elements.

The linear solver without preconditioning requires two types of communication: (1) an update
of the nodal values along processor edges for each matrix vector product and (2) a global sum
for each inner product. The additive Schwarz / block Jacobi preconditioning does not require
any communication. The coarse mesh preconditioning also requires two types of communication.
Initially, each processor forms part of the coarse matrix, and a global communication is used to
assemble these parts on all of the processors. The coarse mesh problem is then solved redundantly
on every processor. Each application of the preconditioner also requires the communication of the
residual vector. Each processor sums its pieces of the residual vector, and a global communication
is used to pass these pieces to all of the processors. The coarse preconditioner is then applied to
the reduced residual vector. Each processor then expands the appropriate portion of the reduced
vector and updates its portion of the full residual vector.

3. Numerical Results. In this section we report on a simulation of a heterogeneous column
experiment. The physical problem, pictured in Figure 3.1, is a column filled with a mixture of clay,
silt, and sand. The column is primarily sand, with a clay lens near the bottom of the column and silt
lenses in several places throughout the column. Boundary conditions applied to the column were
prescribed total head (pressure head plus elevation from a datum) at the bottom and no-water-
flux boundaries on the sides and top. The no flow condition imposed on the top of the column
means that there is no flow from the water phase through the top of the column. Air is assumed
to be present everywhere and will enter the column onasce the water is removed from the pore
spaces. Initially, the column is water saturated. At the start of the simulation, the bottom boundary
condition is gradually modified to atmospheric pressure head and the column was allowed to drain
by gravity for 100 seconds.
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FIG. 3.1. 3D Heterogeneous Column
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We discretized the equation on an unstructured tetrehedral mesh. We used the piecewise con-
stant in time and piecewise linear in space finite element discretizations from [1]. The residual
formulation of Richards’ equation is

R ( ;w) =
R
Qn
R ( )wh dQ

=
R
Qn

�
SSS ( ) @ 

h

@t
+ �

@S( h)
@t

�
wh dQ�

R
Qn
rwh :

h
KSkr

�
 h

�
r
�
 h + z

�i
dQ

�
R

n

�
wh

�+
n
�

�
SS

��
S
�
 h

�
 h

�+
n
�
�
S
�
 h

�
 h

�
�

n

�
+ �

�
S
�
 h

�+
n
� S

�
 h

�
�

n

��
d


�
R
P̂n

h
wh �KSkr

�
 h

�
r
�
 h + z

�i
� n̂ dP +

R
Qn
wh �W dQ

(3.1)

In (3.1) 
 is the column, � the boundary, Qn = 
 � (tn; tn+1], and Pn = � � (tn; tn+1]. P̂n
denotes the part of Pn where Neumann conditions are applied.

We report on two discretizations of the column, one roughly 8 times the size of the other.
In this way h, the typical cell diameter for the mesh, and H , the typical subdomain size, are
both approximately halved as the mesh is refined. This allows us to gauge the scalability of the
iteration. The coarse mesh was generated automatically and refined by hand, (roughly) halving
the mesh width in each of the x, y, and z directions. The small mesh has 5881 nodes and 30720
elements and the large mesh has 43889 nodes and 245760 elements. The meshes were generated
using the Groundwater Modeling System (GMS) [2] and subdomains were constructed using the
node ordering from GMS.

We terminate the linear iteration using (2.6), the l1 norm. and [�a; �r] = [10�7; 0]. We
terminate the nonlinear iteration when (2.3) holds with [�a; �r] = [10�5; 0]. In the experiments
reported here only one nonlinear iteration was needed at each time step.

Updating preconditioning information infrequently in a temporal integration is common prac-
tice. In codes like DASPK, [4], for example, the decision to update preconditioning information at
a given time step can be tied to the performance of the linear or nonlinear solver. A two-level pre-
conditioner has two parts, the subdomain solvers and the coarse mesh work, i. e. computation and
factorization of the coarse mesh matrix. In this computation we found that the coarse mesh work
scaled poorly. The reasons for this are that each processor must compute a part of the coarse mesh
matrix and communicate it to the others and that a dense matrix LU factorization was used because
we had no way, other than brute force, to obtain sparsity information about the coarse mesh matrix.
We reduced computation time by 20% by not performing the coarse mesh work at every time step.
In the computations reported here, the coarse mesh work was done every 10 nonlinear iterations.
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A more sophisticated strategy for updating both components of the preconditioner is needed and
will be the subject of future research.

In Table 3.1 we report on the number of linear iterations for the entire simulation (LIC) for
four preconditioners: point Jacobi, one- and two-level additive Schwarz, and the two-level hybrid
II preconditioner given by (2.13). We give the time in seconds for the entire simulation (TS) and
the cumulative time for the linear solver (TL). The final row in the table is the ratio of iteration
counts for the two problems, which we use as a measure of scalability.

Table 3.1 shows that the one-level preconditioner is worse than point Jacobi in terms of com-
putational time and that both the two-level and the hybrid two-level preconditioner are far better in
terms of both number of iterations and computer time.

TABLE 3.1
3D Heterogeneous Column Results

Small: 5 PEs, 8 blocks

Point Jacobi One-Level Two-Level Hybrid

LI 13364 8292 2137 1493

TS 84 133 74 71

TL 50 99 32 30

Large: 40 PEs, 8 blocks

LI 19394 16783 2688 1848

TS 184 275 107 106

TL 130 235 63 55

Ratio 1.45 2.02 1.26 1.24

The computations reported here were performed on an IBM SP with 177 200Mhz Power3
processors on 2-way SMP nodes with 1Gb of memory per node running IBM AIX Version 4.3,
IBM PE 2.4, and IBM C for AIX Version 4.4.

The results of the test problems show that the incorporation of a coarse mesh problem into
the preconditioner is necessary to obtain a significant reduction in the computational time. The
aggregate elements appear to have been a sensible choice for the coarse mesh problem and were
easy to implement.

Acknowledgments. The authors wish to thank David Keyes, Casey Miller, and Jun Zou for
many helpful discussions. The authors also wish to thank Bob Walkup and Dave Klepacki of IBM
Research and Eric Sills and Mark Reed of the North Carolina Supercomputing Center for their
help in optimizing and running the ADH Model on the IBM SP.
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